Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dicyclohexylammonium 2,4-dichlorophenoxyacetate and (2,4-dichlorophenoxyacetato-*O*,*O*')bis(triphenylphosphine-*P*)silver(I)

Ramis Rao Subramanian et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

electronic papers

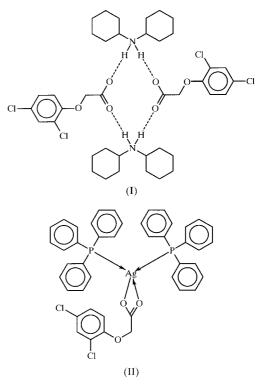
Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Dicyclohexylammonium 2,4-dichlorophenoxyacetate and (2,4-dichlorophenoxyacetato-*O*,*O*')bis(triphenylphosphine-*P*)silver(I)

Ramis Rao Subramanian,^a Shanmuga S. Anandan,^b Kuan Hiang Kwek,^a Kum Sang Low,^a S. Shanmuga Sundara Raj,^c Hoong-Kun Fun,^c Ibrahim Abdul Razak,^c John V. Hanna^d and Seik Weng Ng^e*

^aDepartment of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^bBiomedical Engineering Program, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^dANSTO NMR Facility, Materials Division, Private Mail Bag 1, Menai, New South Wales 2234, Australia, and ^eInstitute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my


Received 16 May 2000 Accepted 30 May 2000

Data validation number: IUC0000157

The monoclinic cell of dicyclohexylammonium 2,4-dichlorophenoxyacetate contains four $C_{12}H_{24}N^+ \cdot C_5H_8Cl_2O_3^-$ ion pairs. The ammonium N atom is hydrogen bonded to the oxygen ends of two carboxyl groups to form a 12-membered $O-C-O\cdots$ HNH $\cdots O-C-O\cdots$ HNH ring. In (2,4-dichlorophenoxylacetato)bis(triphenylphosphine)silver(I), [Ag(C_8H_5Cl_2O_3)(C_{18}H_{15}P)_2], the carboxyl CO_2 unit chelates to the Ag atom in an anisobidentate manner [Ag-O = 2.436 (2) and 2.517 (2) Å]; the Ag atom shows distorted tetrahedral geometry.

Comment

Dimeric 2,4-dichlorophenoxyacetic acid $[O \cdots O = 2.632 \ (6) \text{ Å};$ Smith *et al.*, 1976] is a potent herbicide (Que Hee & Sutherland, 1981). The acid cocrystallizes with 4-aminobenzoic acid (Lynch *et al.*, 1992) and with 2-aminopyrimidine (Lynch *et al.*, 1994), and its anion has been characterized as the zinc (Kennard *et al.*, 1982), potassium (Kennard *et al.*, 1983), silver (Mak *et al.*, 1988) and copper (Dendrinou-Samara *et al.*, 1986) salts. The only ammonium salt of the acid that has been examined appears to be the 3-hydroxypyridinium derivative, which adopts a chain structure in which the anions are linked by hydrogen bonds (N···O = 2.60 and O···O = 2.55 Å; Byriel *et al.*, 1992). The study on the present dicyclohexylammonium salt, (I), continues studies of dicyclohexylammonium salts of monocarboxylic acids. Dicyclohexylammonium trifluoroacetate crystallizes as linear hydrogen-bonded chains [N···O = 2.785 (2) and 2.794 (2) Å; Ng *et al.*, 1999], but this architecture is not common as several other dicyclohexylammonium monocarboxylates pack as dimeric ion pairs across a centre of

symmetry. Such an architecture is observed for the O-(N,Ndimethylmonothiocarbamoyl)acetate $[N \cdot \cdot \cdot O = 2.706 (4)]$ and 2.750 (3) Å], N-phthaloylglycinate $[N \cdots O = 2.733 (5)]$ and 2.783 (5) Å; Ng, 1995], bis(N,N-dimethyldithiocarbamoyl)acetate $[N \cdots O = 2.701 (3) \text{ and } 2.796 (3) \text{ Å}; 2.698 (3) \text{ and }$ 2.837 (3) Å; Ng, 1996], N,N-dicyclohexyldithiocarbamoylacetate $[N \cdots O = 2.706 (2) \text{ and } 2.757 (2) \text{ Å}; \text{ Ng}, 1997]$ and 3oxapentamethylenedithiocarbamoylacetate $[N \cdot \cdot \cdot O]$ 2.732 (4) and 2.738 (4) Å; Ng & Hook, 1999]. As the substituted acetate group carries bulky substituents, steric effects probably contribute to this type of dimer formation. This arrangment is also found in the 2,4-dichlorophenoxyacetate $[N \cdot \cdot \cdot O = 2.751 (3) \text{ and } 2.784 (3) \text{ Å}]$. The carbon-oxygen distances in the carboxyl $-CO_2$ end [C-O = 1.224 (2)] and 1.238 (2) Å] indicate delocalization of the negative charge. At the ether linkage, the C_{alkyl} -O distance [C-O = 1.421 (4) Å] exceeds the C_{aryl} -O distance [C-O = 1.356 (4) Å]. Bond dimensions in the anion are not much different from those found in the parent acid $[C-O_{carboxyl} = 1.217 (6)$ and 1.304 (5) Å; C_{alkyl} -O = 1.423 (5), C_{aryl} -O = 1.365 (5) Å; Smith et al., 1976]. In the parent acid as well as in the dicyclohexylammonium salt, the angle at the ether linkage is nearly 120°. The bond dimensions of the ether linkage in the acid and in the salt are in agreement with the results (Calkyl-O = 1.407, C_{arvl} – O = 1.371 Å and C–O–C = 119.4°) of molecular mechanics calculations on the monomeric acid computed with the MM3+ basis set (Hypercube Inc., 1995). The computations suggest a planar structure as the most stable conformation; on the other hand, the carboxyl unit is twisted

2447 reflections with $I > 2\sigma(I)$

50 standard frames at start and end

intensity decay: none

 $R_{\rm int} = 0.059$

 $h = -15 \rightarrow 15$

 $k = -21 \rightarrow 11$

 $l = -10 \rightarrow 10$

 $\theta_{\rm max} = 25^{\circ}$

by 85.2° with respect to the aromatic ring in the acid and by $80.8(3)^{\circ}$ in the salt. The synclinal conformation of 2,4-dichlorophenoxyacetic acid appears to be a feature that is not usually found in other phenoxyacetic acids or in metal phenoxyacetates (Mak et al., 1988) such as zinc 2,4-dichlorophenoxyacetate (Kennard et al., 1982) and potassium 2,4-dichlorophenoxyacetate (Kennard et al., 1983).

The silver 2,4-dichlorophenoxyacetate dimer, for which only partial structural details are reported, displays a zigzag motif that is derived through carboxylate bridging of the two independent molecules, and both Ag atoms are two-coordinate. The compound is isomorphous and isostructural with silver 2-methyl-4-chlorophenoxyacetate [Ag-O = 2.185 (3)-2.217 (3) Å], whose full structural details are reported. As the dihedral angles between the carboxyl and the aromatic planes in the latter compound are 15 and 18°, both invidual monomers are almost planar (Mak et al., 1988). (2,4-Dichlorophenoxyacetato)bis(triphenylphosphine)silver, (II), shows a twist [dihedral angle = $65.1 (1)^{\circ}$] that is comparable with that found in the dicyclohexylammonium salt. The chain motif of the silver salt is disrupted upon coordination by the two phosphine-donor ligands, and two weaker silver-oxygen bonds are formed instead [Ag-O = 2.435(2)] and 2.516 (2) Å]. The distorted tetrahedral geometry of silver in this adduct is similar to those found in a number of 1:2 adducts of silver carboxylates with triphenylphosphine such as the acetate (Ng & Othman, 1997), trifluoroacetate (Ng, 1998) and lactate (Hanna & Ng, 2000).

Of the two triphenylphosphine ligands, one is disordered in two of phenyl rings. The C1-C6/C1'-C7' pair of rings are twisted by 42 (1)°, and the C7–C12/C7'–C12' pair by 33 (1)°. The disorder is corroborated by the CP/MAS spectral values: the ${}^{1}J(Ag-P)$ coupling constants of the ordered and disordered phosphorus sites are significantly different. The linewidths of the NMR signals constitute the basis for assigning the ordered/disordered sites; the ordered phosphorus signal yields ${}^{1}J({}^{107}Ag{}^{-31}P)$ and ${}^{1}J({}^{109}Ag{}^{-31}P)$ couplings that are clearly resolved, whereas the disordered phosphorus signal is Lorentzian broaden so that these couplings cannot be resolved. The silver-phosphorus_{disordered} distance [2.4073 (8) Å] is statistically shorter than the silver-phosphorus_{ordered} distance [2.4753 (8) Å].

Experimental

Dicyclohexylamine, dissolved in a small volume of ethanol, was added to an ethanol solution of 2,4-dichlorphenoxylacetic acid (1:1 molar ratio of reactants). Ethanol was added to dissolve the ammonium carboxylate that precipitated from solution, and the mixture was heated until most had dissolved completely; the filtered solution afforded long colourless crystals when it was cooled. Solid-state crosspolarization/magic angle-spinning (CP/MAS) ¹³C NMR: $\delta = 172.3$ (-CO₂); 154.3, 129.8, 114.1 (-C₆H₃Cl₂); 68.0 (-CH₂-O-); 54.6, 51.4, 31.4, 29.8, 28.1, 26.2 p.p.m. (cyclo- C_6H_{11}). Equimolar quantities of aqueous sodium 2,4-dichlorophenoxyacetate and silver nitrate were mixed to afford an immediate white precipitate of silver 2,4-dichlorophenoxyacetate, which was collected, washed with water, and

then air dried. The silver salt and triphenylphosphine (1:2 molar ratio) were heated in a small volume of ethanol until the reactants dissolved completely; slow cooling of the filtered solution yielded faint tan-colored crystals of the 1:2 complex. ¹³C NMR: $\delta = 173.9$ (- CO_2); 155.6, 135.4–130.1, 116.4 (– $C_6H_3Cl_2$ overlapped with – C_6H_5); 70.3 p.p.m. (-CH2-O). CP/MAS ³¹P NMR for the ordered triphenylphosphine ligand: $\delta = 20.8 \pm 0.1$ p.p.m., ${}^{1}J(Ag-P) = 508 \pm 4$ Hz, $^{2}J(P-P) = 140\pm4$ Hz. CP/MAS ^{31}P NMR for the disordered triphenylphosphine ligand: $\delta = 15.9 \pm 0.1$ p.p.m., ${}^{1}J(Ag-P) = 383 \pm 4$ Hz, $^{2}J(P-P) = 140 \pm 4$ Hz.

Compound (I)

Crystal data

$C_{12}H_{24}N^+ \cdot C_8H_5Cl_2O_3^-$	$D_{\rm r} = 1.260 {\rm Mg} {\rm m}^{-3}$
$M_r = 402.34$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 6107
a = 13.3847 (1) Å	reflections
b = 18.2966 (3) Å	$\theta = 2.73 - 28.37^{\circ}$
c = 8.9780 (1) Å	$\mu = 0.325 \text{ mm}^{-1}$
$\beta = 105.296 (1)^{\circ}$	T = 298 (2) K
$V = 2120.78 (4) \text{ Å}^3$	Parallelepiped, colourless
Z = 4	$0.48 \times 0.42 \times 0.28 \text{ mm}$

Data collection

Siemens CCD area-detector diffractometer w scans Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\min} = 0.860, \ T_{\max} = 0.915$ 11 531 measured reflections 3737 independent reflections

Refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0975P)^2]$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.063$ + 0.5146P] where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.198$ S = 1.064 $(\Delta/\sigma)_{\rm max} < 0.001_{\circ}$ $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$ 3737 reflections $\Delta \rho_{\rm min} = -0.44$ e Å⁻³ 244 parameters H atoms treated by a mixture of Extinction correction: SHELXL97 independent and constrained Extinction coefficient: 0.014 (2) refinement

Table 1

Hydrogen-bonding geometry (Å, °) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1A \cdots O1 \\ N1 - H1B \cdots O2^{i} \end{array}$	0.95 (4)	1.85 (4)	2.784 (3)	169 (3)
	0.86 (4)	1.90 (4)	2.751 (3)	171 (3)

Symmetry code: (i) -x, 1 - y, -z.

Compound (II)

Crystal data	
$[Ag(C_8H_5Cl_2O_3)(C_{18}H_{15}P)_2]$	$D_x = 1.402 \text{ Mg m}^{-3}$
$M_r = 852.43$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 7909
a = 13.4500 (2) Å	reflections
b = 25.8202 (4) Å	$\theta = 2.82 - 28.38^{\circ}$
c = 11.7071 (2) Å	$\mu = 0.749 \text{ mm}^{-1}$
$\beta = 96.790 \ (1)^{\circ}$	T = 298 (2) K
$V = 4037.2 (1) \text{ Å}^3$	Parallelepiped, colourless
Z = 4	$0.42 \times 0.38 \times 0.28 \text{ mm}$

electronic papers

Data collection

Siemens CCD area-detector diffractometer w scans Absorption correction: empirical (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.744$, $T_{\max} = 0.818$ 22 253 measured reflections 7085 independent reflections <i>Refinement</i>	5520 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 25^{\circ}$ $h = -15 \rightarrow 15$ $k = -26 \rightarrow 30$ $l = -13 \rightarrow 13$ 50 frames from start to end intensity decay: none
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0580P)^2]$
$wR(F^2) = 0.110$	where $P = (F_o^2 + 2F_c^2)/3$

 $wR(F^2) = 0.110$ S = 0.9727085 reflections 531 parameters

Table 2

Selected geometric parameters (Å, $^{\circ}$) for (II).

Ag1-O1	2.435 (2)	Ag1-P1	2.4073 (8)
Ag1-O2	2.516 (2)	Ag1-P2	2.4753 (8)
O1-Ag1-O2	52.9 (1)	O2-Ag1-P1	118.2 (1)
O1-Ag1-O1	129.6 (1)	O2-Ag1-P2	102.7 (1)
O1-Ag1-P2	101.5 (1)	P1-Ag1-P2	127.0 (1)

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.63 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

In (II), two of the phenyl rings of one of the triphenylphosphine ligands are disordered, and each was refined as two regular hexagons; an ISOR 0.02 instruction was used on all the disordered atoms. The $P-C_{ipso}$ distances were restrainted by a SADI 0.01 instruction, as were the four $P-C_{ortho}$ distances.

For both compounds, data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

We thank the University of Malaya (Vote F), the National Science Council for R&D, Malaysia (IRPA 09-02-03-0662, 190-9609-2801), and the ANSTO NMR Facility for supporting this work.

References

- Byriel, K. A., Kennard, C. H. L., Lynch, D. E., Smith, G. & Thompson, J. G. (1992). Aust. J. Chem. 45, 969–981.
- Dendrinou-Samara, C., Psomas, G., Christophorou, K., Tangoulis, V., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (1996). J. Chem. Soc. Dalton Trans. pp. 3737–3743.
- Hanna, J. V. & Ng, S. W. (2000). Acta Cryst. C56, 24-25.
- Hypercube Inc. (1995). *HYPERCHEM*5. Hypercube Inc., Gainsville, Florida, USA.
- Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1983). Inorg. Chim. Acta, 77, L181–184.
- Kennard, C. H. L., Smith, G., O'Reilly, E. J., Stadnicka, K. M. & Oleksyn, B. J. (1982). Inorg. Chim. Acta, 59, 241–247.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992). Z. Kristallogr. 200, 73–82.
- Lynch, D. E., Smith, G., Freney, D., Byriel, K. A. & Kennard, C. H. L. (1994). Aust. J. Chem. 47, 1097–1115.
- Mak, T. C. W., Yip, W.-H., Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1988). J. Chem. Soc. Dalton Trans. pp. 2353–2356.
- Ng, S. W. (1995). Malays. J. Sci. 16B, 45-57.
- Ng, S. W. (1996). Acta Cryst. C52, 181-183.
- Ng, S. W. (1997). Acta Cryst. C53, 779-781.
- Ng, S. W. (1998). Acta Cryst. C54, 743-744.
- Ng, S. W., Fun, H.-K. & Shanmuga Sundara Raj, S. (1999). Acta Cryst. C55, 2145–2147.
- Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312-316.
- Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396-1400.
- Que Hee, S. S. & Sutherland, R. G. (1981). *The Phenoxyalkanoic HerbiciDesign*, Vol. I, CRC Series in Pesticide Chemistry. Boca Raton, Florida: CRC Press Inc.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SAINT (Version 4) and SMART Software Reference Manuals. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. II, pp. 791–792.